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ABSTRACT 

 

Selection of durum wheat genotypes with wide adaptability across various environments is important before 

recommending them to reach a high rate of genotype adoption. Multi-environment grain yield trials of 20 

durum wheat genotypes were conducted at five locations of Iran (Gachsaran, Gonbad, Moghan, Ilam and 

Khorram abad) over four years (2009-2013). Combined ANOVA of yield data of the 20 environments revealed 

highly significant differences among genotypes and environments as well as significant GE interaction 

indicated differential performance of genotypes over test environments. Results of F Ratio indicated that only 

five interaction principal components (IPCs) were significant at the 0.01 probability level. Also, the GE 

interaction is comprised of 29.7% noise and 70.03% signal. According to these distinct numbers of significant 

axes, fourteen AMMI stability parameters were computed. Finally according to the most of type 1 of AMMI 

parameters (EV1, AMGE1, SIPC1 and D1), genotypes G8, G17 and G11; based on the type 2 of AMMI 

parameters and ASV, genotypes G4, G5, G10, G11 and G17; due to type 3 of AMMI parameters and MASV, 

genotypes G8, G10 and G12 were detected as the most stable genotypes. Considering all of the AMMI stability 

parameters, genotypes G8, G10, G11, G12 and G17 following to genotypes G7 and G9 were the most stable 

genotypes. The best recommended genotypes according to the present study are G10 with 3470 kg ha-1 grain 

yield for Gachsaran and Khorramabad, G12 with 3343 kg ha-1 grain yield for Ilam and G10 and G12 for 

Moghan and Gonbad regions wich had high mean yield and were most stable for related mega-environments.  
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INTRODUCTION 

The exploring for genotypes with high mean yield 

adapted in the most various environments is one of the 

most important objectives for durum wheat breeders. The 

presence of differential genotypic responses in different 

test environments, known as the genotype × environment 

(GE) interaction, is a usual phenomenon in most plant 

breeding programs (Kang, 1998; Adugna and 

Labuschagne, 2002; Akcura et al., 2009; Karimizadeh et 

al., 2012b; Mohammadi et al., 2012). Thus, the choice of 

genotypes which indicate good genetic homeostasis is 

essential for yield increases. The GE interaction governs 

the identification of the most stable genotypes that are 

suitable for specific environment, as well as of genotypes 

with a general response that are suitable for several test 

environments (Annicchiarico, 2002). The measure of GE 

interaction is important, because it can be used to establish 

the breeding targets, such as the choice of parents and 

recommendations for regional adapted cultivars (Yan et 

al., 2000). 

The presence of genotype–environment interaction 

(GEI) in a multi-environment trial (MET) is expressed 

either as inconsistent responses of some genotypes with 

respect to others due to the alteration of the ordering of the 

genotypes from one environment to another (GEI with 

rank change or crossover interaction) or as changes in the 

absolute differences between genotypes without rank 

change (GEI without rank change or non-crossover 

interaction). Fisher and MacKenzie (1923), who analyzed 

data from an experiment evaluating 12 potato cultivars 

under each of six soil-fertilization treatments, were the 

first authors to propose breaking down the response into a 
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series of multiplicative terms fitted by least squares; 

however, this work was apparently forgotten for many 

years. Yates and Cochran (1938) proposed breaking down 

the GEI into one multiplicative term and a deviation 

therefore, examining whether the GEI is a linear function 

of the additive environmental component. This regression 

approach expresses the GEI simply as heterogeneity of 

slopes and was later used by Finlay and Wilkinson (1963) 

and slightly modified by Eberhart and Russell (1966). 

Tukey (1949) proposed a test for the GE and Mandel 

(1961) generalized Tukey’s (1949) Model. Mandel (1971) 

computed the number of degrees of freedom associated 

with the sum of squares (SS) due to each of the first three 

bilinear terms in Equation 1 by a Monte Carlo study, and 

Johnson and Graybill (1972) found that Mandel’s (1971) 

results were close to the exact values. Gabriel (1978) 

showed that a least-squares (LS) solution for model 

parameters in Equation 1 can be obtained by taking the 

estimates of the bilinear terms as the t largest components 

of the singular value decomposition (SVD) of the Z matrix 

( 0000 XXXXZ jiijij  ) with the additive 

(linear) effects estimated as we have previously given for 

their estimates in the two-way fixed effects model. 
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        (Eq. 1) 

Zobel et al. (1988) and Gauch (1988) named Equation 

1 the ‘additive main effects and multiplicative interaction 

(AMMI) model. They further introduced a data-splitting 

and cross-validation procedure for determining the 

number of multiplicative components to retain in a 

truncated AMMI model. The AMMI model and four other 

linear bilinear models and their least square estimates 

were described and unified in one general methodology by 

Cornelius et al. (1996). These authors described various 

statistical tests for the significance of the bilinear terms 

and mentioned the possibility of using shrinkage estimates 

of these models for improving the prediction of the GE 

cells.  

The widely used statistical method for characterizing 

GE interaction and to predict genotypic response was 

proposed by (Finlay and Wilkinson, 1963). This procedure 

needs analysis of stability parameters (line slope and 

deviation from linearity) of crop genotype performance 

over a series of trials. The linear regression model has 

some problems such as confounding between GE 

interaction with the main effects of genotypes or 

environments, and nonlinear response of genotypes to test 

environments (Nachit, 1992; Annicchiarico, 1997). Also, 

the variation of the regression coefficients’ estimates is 

usually so small and so the classification of the genotype 

for stability is difficult (Yue et al., 1997). Williams 

(1952), Gollob (1968), and Mandel (1971) have made an 

important contribution to the development of additive 

main effects and multiplicative interaction (AMMI) 

models. Gauch (1988) and Zobel et al. (1988) suggested 

the AMMI model for investigating multi-environment 

experiments and compared with analysis of variance, 

linear regression, and principal component analysis. The 

AMMI model has been used to analyze multi-environment 

trials because of its good flexibility in permitting the use 

of several multiplicative terms to explain the GE 

interaction.  

For all models that include singular value 

decomposition (SVD) matrix, the main question that 

researcher do not yet have an answer to is which test to 

apply for testing multiplicative components. Cross-

validation method is the one of the solutions that has been 

offered to select an optimal multiplicative term (Gauch, 

1988). Random partitioning of the data set into K groups 

is the basic idea for cross-validation procedure. Then, the 

reduced data set is formed by deleting the first group and 

estimating the parameters of the model on the basis of the 

reduced data set. By using these parameters, the model 

values are calculated for the objects in the deleted group. 

Then the sum of squares of prediction errors is calculated 

from the predicted values and observed values of the 

deleted objects. The procedure is repeated for the new 

reduced data set several times (Wold, 1978). Then, the 

Root Mean Square Predictive Difference (RMSPD) 

between the model and the validation observations 

(deleted group) is calculated as the square root of the 

quantity of the sum of square differences between the 

estimated model and the the validation observations which 

is divided by the number of validation observation (Ebdon 

and Gauch, 2002). The advantage  of  cross-validation  

application  is that the predictive accuracy of gain factor 

(statistical efficiency) associated with the AMMI model is 

increased, which is equivalent to increasing the number of 

replications in the data  set  (Ebdon  and  Gauch,  2002;  

Gauch, 2006). Thus, estimates from two adjusted 

replicates are more accurate than the unadjusted means of 

the same replicates. By using the cross-validation 

procedure, noise is typically filtered from the data pattern. 

Therefore, the predictive accuracy is more interpretable 

and it provides a simple guide for model diagnosis by 

keeping the early axes that are mostly patterned than to 

discarded residual (Gauch, 1988). 

The AMMI model has been detected as an innovative 

methodology in graphic analysis to be applied in plant 

breeding programs (Gauch, 2006; Gauch et al., 2008; Ilker 

et al., 2011; Mladenov et al., 2012). The mega-

environment analysis through AMMI model can be 

regarded a true tool because it discovers the “which-won-

where” pattern. Sabaghnia et al. (2008) and Karimizadeh 

and Mohammadi (2010) reported an AMMI analysis of 

grain yield of some durum wheat genotypes grown in 

semi-arid areas and reported that several interaction 

principal components analysis (IPCAs) were necessary to 

explain the sum of squares of GE interaction. Solomon et 

al. (2008) used parametric and AMMI methods for 

determining GE interaction of some durum wheat 

genotypes grown in South Africa. The AMMI model can 

help to identify highly productive and broadly adaptable 

genotypes, and to establish region specific 

recommendations (Gauch and Zobel, 1996). The AMMI 

model has been reported to be more effective than the 
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conventional two way model with interactions. According 

to Gauch and Zobel (1997), the AMMI model achieves 

both parsimony (contains relatively few degrees of 

freedom for the interaction), and effectiveness (contains 

most of the interactions sum of squares) in analysis of 

multi-environment trials.  

Yield stability can be assessed by AMMI analysis as 

the different statistical stability parameters. Zobel (1994) 

introduced averages of the squared eigenvector (EV) 

values as the AMMI stability parameter. Sneller et al. 

(1997) suggested AMGE and SIPC stability parameters of 

AMMI model to describe the contribution of 

environments to GE interaction. The AMMI stability 

value (ASV) benefits from the first two IPCA of AMMI 

model (Purchase, 1997) and modified AMMI stability 

value proposed by Zali et al. (2012). The Euclidean 

distance from the origin of significant interaction IPCA 

axes as D parameter was suggested by Annicchiarico 

(1997). The use of the AMMI stability parameters permits 

to evaluate yield stability after reduction of the noise from 

the GE interaction effects. Any of these parameters may 

also be of interest for breeding programs as an alternative 

to the conventional stability methods such as joint linear 

regression model. This investigation was carried out to 

evaluate the effect of GE interaction on the yield 

performance of cultivars and improved genotypes of 

durum wheat in semiarid areas of Iran.  

The objectives of this study were to evaluate stability 

of durum wheat genotypes across test environments, to 

evaluate the GE interaction for grain yield of durum 

wheat, and to evaluate the relationship of test 

environments for selecting superior genotypes within the 

mega-environment using AMMI model. 

MATERIALS AND METHODS 

Field Trials 

The data used in the yield analyses are from 19 

genotypes with one local check cultivar (Dehdasht) grown 

for 4 years (2009-2013) at each of five locations in Iran 

(genotype names and pedigrees is in Table 1). The trial 

locations were selected to sample climatic and edaphic 

conditions likely to be encountered in rain-fed durum 

wheat growing throughout Iran and to vary in latitude, 

rainfall, soil types, temperature and other agro-climatic 

factors. Moghan (Mn) in north of Iran, Gonbad (Gd) in the 

north-east of Iran, that these areas are characterized by 

semi-arid conditions and have sandy loam soil. Khorram 

abad (Kd) and Ilam (Im), in western Iran, Gachsaran (Gn), 

in southern Iran, is relatively arid and has silt loam soil. 

The experimental plant seed materials were from national 

durum wheat improvement program for rain-fed areas and 

the International Centre for Agricultural Research in the 

Dry Areas (ICARDA) durum wheat breeding program. 

The experimental design, at each location, in each year, 

was a randomized complete block with four replicates. 

Plots were planted at a seeding rate of 300 seed per m2 by 

WINTERSTEIGER AG trial drilling machine. Plot size 

was containing six rows (7.03 m long) with row 

differences of 17.5 centimeters. Fertilizers were applied 

80 kg ha-1 of nitrogen and 80 kg ha-1 of phosphorus as 

40.40.0 composes at planting time, 80 kg ha-1 of nitrogen 

as ammonium nitrate (half of the top dressed fertilizer) 

was given at tillering, and the other half of the top dressed 

fertilizer was given at swollen stage. No disease was 

shown during growth period, and weed control was made 

by chemical method (Topic and Granstar poisons). After 

physiological maturity, plots were harvested by 

WINTERSTEIGER AG trial thrasher machine. Regional 

climatic data during growth seasons used to in Table 2.  

Statistical analysis 

Mean grain yield data of the experiment were 

statistically treated by AMMI model analysis. This 

analysis consists in the sequential fitting of a model of 

analysis of experiments, initially by ANOVA (additive 

fitting of the main effects) and then by analysis of 

principal components (multiplicative fitting of the effects 

of interaction). The model AMMI equation is: 
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        (Eq. 1) 

where ijY  is the yield of the ith genotype in the jth 

environment;   is the grand mean; 
ig  and je  are the 

genotype and environment deviations from the grand 

mean, respectively; 
n  is the eigenvalue of the IPC 

analysis axis n; 
in  and jn  are the genotype and 

environment eigenvectors for axis n; n is the number of 

principal components retained in the model and ij  is the 

error term. The analysis was implemented by SAS 

software with the routine available by Burguenoet al. 

(2000).  

According to different results of significant numbers 

of IPCAs through Ftest and cross validation, various 

AMMI parameters were computed. Three types of EV 

(Zobel, 1994), AMGE and SIPC (Sneller et al., 1997) and 

D parameters (Annicchiarico, 1997) were calculated. 

Also, the AMMI's stability value (ASV) and the Modified 

AMMI's stability value (MASV) were calculated 

(Purchase, 1997) using two first numbers of IPCAs and 

significant numbers of IPCAs, respectively. The formulae 

for computing these AMMI stability parameters are 

summarized in Table 3. All parameters were computed 

using the statistical package Genstat release 12.0 (Payne et 

al., 2009).  
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Table 1. Pedigree and origin of the 20 durum wheat genotypes  studied in multi-environmental trials 

Code Name/Pedigree Origin  

G1 
ACUATICO_1/RASCON_33//ACUATICO_1/3/AJAIA_12/F3LOCAL(SEL.ETHIO.135. 

85)//PLATA_13CDSS96Y00570S-8Y-0M-0Y-1B-0Y-0B-0B 
CIMMYT 

G2 GAUNT_10/SNITANCDSS97Y00638S-4Y-0M-0Y-0B-0B-3Y-0BLR-1Y-0B CIMMYT 

G3 
SOMO/CROC_4//LOTUS_1/3/KITTI/4/STOT//ALTAR 84/ALDCDSS99Y00636S-0M-0Y-34Y-0M-0Y-

0B 
CIMMYT 

G4 
CMH82A.1062/3/GGOVZ394//SBA81/PLC/4/AAZ_1/CREX/5/HUI//CIT71/CII/6/STOT//ALTAR 

84/ALDCDSS99Y00643S-0M-0Y-16Y-0M-0Y-0B 
CIMMYT 

G5 

SRN_1/6/FGO/DOM//NACH/5/ALTAR 84/4/ GARZA/AFN//CRA/3/GGOVZ394/7/GEDIZ/ 

FGO//GTA/3/CNDO/8/GREEN_ 38/9/2*STOT//ALTAR 84/ALDCDSS00B00227T-0TOPY-0B-6Y-0M-

0Y-1B 

CIMMYT 

G6 
LLARETA INIA/YEBAS_8/3/MINIMUS_6 /PLATA_16//IMMERCDSS00Y01047T-0TOPB-5Y-0BLR-

1Y-0B-0Y-1B-0Y 
CIMMYT 

G7 RASCON_21/3/MQUE/ALO//FOJACDSS94Y00099S-7M-0Y-0B-1Y-0B-0BLR-5Y-0B CIMMYT 

G8 
GEDIZ/FGO//GTA/3/SRN_1/4/TOTUS/5/ENTE/MEXI_2//HUI/3/YAV_1/GEDIZ/6/SOMBRA_20/7/ST

OT//ALTAR 84/ALDCD SS97Y00835 S-0TOPM-4Y-0M-0Y-0B-0B-3Y-0BLR-1Y-0B 
CIMMYT 

G9 
STOT//ALTAR 84/ALD/3/THB/CEP7780// 2*MUSK_4CDSS99Y00366 S-3Y-0M-0Y-0BLR-1Y-0B-

1M-0Y 
CIMMYT 

G10 
ALTAR 84/STINT//SILVER_ 45/3/STOT// ALTAR 84/ALDCDSS99Y 00373S-7Y-0M-0Y-0BLR-6Y-

0B-1B-0Y 
CIMMYT 

G11 
STOT//ALTAR 84/ALD/3/GREEN_18/ FOCHA_1 //AIRON_1CDSS 99B00467S-0M-0Y-75Y-0M-0Y-

2M-0Y 
CIMMYT 

G12 
RASCON_21/3/MQUE/ALO//FOJA/4/GREEN_38/BUSHEN_4/5/CADO/BOOMER_33CDSS99B01055

T-0TOPY-0M-0Y-10Y-0M-0Y-1M-0Y 
CIMMYT 

G13 
STOT//ALTAR 84/ALD*2/3/AUK/GUIL// GREENCDSS00Y00786T-0TOPB-9Y-0BLR-5Y-0B-0Y-1M-

0Y 
CIMMYT 

G14 

SRN_1/6/FGO/DOM//NACH/5/ALTAR 84/4/ GARZA/AFN//CRA/3/GGOVZ394/7/GEDIZ/ 

FGO//GTA/3/CNDO/8/GREEN_38/9/2*STOT//ALTAR 84/ALDCDSS00B00227T-0TOPY-0B-28Y-0M-

0Y-1M-0Y 

CIMMYT 

G15 AINZEN-1/SORD_3CDSS99B00317S-0M-0Y-104Y-0M-0Y-1M-0Y CIMMYT 

G16 
PLATA_8/4/GARZA/AFN//CRA/3/GTA/5/RASCON/6/CADO/BOOMER_33/7/STOT//ALTAR 

84/ALDCDSS99B00843S-0TOPY-0M-0Y-5Y-0M-0Y-1B-0Y 
CIMMYT 

G17 
ALTAR 84/STINT//SILVER_45/3/CBC 503 CHILE/4/AUK/GUIL// GREENCD SS99B01115T -0TOPY-

0M-0Y-1Y-0M-0Y-1B-0Y 
CIMMYT 

G18 
ALTAR 84/BINTEPE 85/3/ALTAR 84/STINT// SILVER_45/4/LHNKE/RASCON//CONA-DCD 

SS99B01265T-0TOPY-0M-0Y-12Y-0M-0Y-1M-0Y 
CIMMYT 

G19 Saimareh Iran 

G20 Dehdasht Iran 

 

Table 2. Agro-climatic properties of the location tested in Iran 

Location 
Longitude 

Latitude 

Altitude 

(m) 
Soil Texture Soil Type 

Rainfall 

(mm) 

Gachsaran 
50° 50´ E 

30° 20´ N 
710 Silty Clay Loam Regosols 455 

Gonbad 
55° 12´ E 

37° 16´ N 
45 Silty Clay Loam Regosols 367 

Khorram Abad 
48° 12´ E 

33° 29´ N 
1125 Silt-Loam Regosols 433 

Ilam 
46° 36´ E 

33° 47´ N 
975 Clay-Loam Regosols 502 

Moghan 
47° 88´ E 

39° 39´ N 
100 Sandy-Loam Cambisols 271 
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Table 3. Equations of AMMI stability parameters used in this study 

Author (s) Equation Parameters 

Zobel (1994) 

 

EV 

Sneller (1997) 

 

AMGE 

Sneller (1997) 

 

SIPC 

Annicchiarico (1997) 

 

D 

Purchase (1997) 

 

ASV 

(Zali et al., 2012) 

 

MASV 

EV = Eigenvector, AMGE = Sum across environments of GEI, SIPC = Sum of the value of the IPC Scores, D = Parameter of Annicchiarico (1997), 

ASV = AMMI stability value, MASV = Modified AMMI Stability value (Zali et al., 2012). 

 

RESULTS AND DISCUSSION 

The combined analysis of variance was conducted to 

determine the effects of environment (location × year 

combination), genotype, and their interactions on grain 

yield of durum wheat genotypes (Table 4). The main 

effects of environment (E) and genotypes (G) were highly 

significant (P < 0.01). The GE interaction was highly 

significant at 1% probability level (P<0.01). Environments 

had the largest effect, explaining 94.2% of total 

variability, while genotypes and GE interaction explained 

only 4.8 and 0.9% of total sum of squares, respectively 

(Table 4). The high significance of GE interactions for 

seed yield of durum wheat genotypes and its large 

magnitude of genotype main effect (larger than five times) 

are indicating that the studied genotypes exhibited 

complex GE interaction. Seed yield is a quantitative trait; 

its expression is the result of genotype, environmental 

factors and GE interaction. Cooper et al. (1995) 

mentioned that the large magnitude of GE interaction 

causes more dissimilarity in the genetic systems that are 

controlling the physiological processes that are conferring 

yield stability in different environments. The relative 

contributions of GE interaction effects for seed yield 

found in this study are similar to those found in other 

studies in rain-fed environments (Bertero et al., 2004; 

Sabaghnia et al., 2006; Karimizadeh and Mohammadi, 

2010; Karimizadeh et al., 2012a; Sabaghnia et al., 2013). 

Therefore, GE interaction makes it difficult to select the 

best performing and most stable genotypes (Yau, 1995). 
 

Table 4. Combined analysis of variance of durum wheat performance trial yield data 

Source df SS MS Propotion Noise Model RMSPDa 

Genotypes 19 21661149 1140060** 0.009c 0.089e − − 

Environments 19 2346434521 123496554** 0.942c 0.001e − − 

Gen × Env 361 123280605 341498** 0.048c 0.297e AMMI0 462.31 

IPCA 1 37 44742284 1209251** 0.363d − AMMI1 452.65 

IPCA 2 35 36143912 1032683** 0.293d − AMMI2 439.15b 

IPCA 3 33 9130861 276693** 0.074d − AMMI3 451.11 

IPCA 4 31 8559177 276102** 0.069d − AMMI4 456.29 

IPCA 5 29 5673139 195625** 0.046d − AMMI5 461.58 

Residuals 196 19031232 97098 − 0.154f AMMIF 475.48 

Error 1140 115619600 101421 − − − − 

Total 1599 2694270223 1684972 − − − − 
*, ** and ***; significant at 0.05, 0.01 and 0.001, respectively.   
IPCA = Interaction Principal Component Analysis, RMSPD = Root Mean Square Prediction Data, 
a Predicted by MATMODEL software with repeating 1000 times splitting data; b The selected model with a minimum root mean square predictive 

difference; c Calculated by dividing on sum of (GEN, ENV, and GEN×ENV) SS; d Calculated by dividing on ENV×GEN interaction SS; e Calculated 
by [(df×MS Error)/SS], f The portion of residual SS from total GEN×ENV Calculated as SSE/(ENV×GEN SS). 
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Results indicated that only five IPCAs were significant 

at the 0.01 probability level. Similar to the results of 

AMMI model which is used in multi-environmental trials 

of durum wheat (Sabaghnia et al. 2012a; Sabaghnia et al. 

2012b; Karimizadeh et al., 2012a; Sabaghnia et al. 2013; 

Mohammadi et al., 2015) or other crops like soybean 

(Zobel et al. 1988), lentil (Sabaghnia et al. 2008; 

Karimizadeh and Mohammadi, 2010), some of 

cereals (Annicchiarico, 1997) and chickpea (Dehghani et 

al., 2010, Zali et al., 2012), the AMMI model used in the 

this investigation showed relatively moderate complex GE 

interaction which required as many as three IPCAs. 

According to the root mean square prediction differences 

(RMSPD) in units of Yield (kg ha-1) are based on 1000 

runs having 400000 validations with actual TRT data and 

zero validations with imputed data, so AMMI2 with 

439.15 value is the best model for interpreting GE 

interaction and yield stability in this dataset (Table 4). 

From Table 3, it implies that the GE interaction is 

comprised of 29.7% noise and 70.03% signal. It is known 

that GE signal increases the number of useful mega-

environments whereas GE noise decreases the number of 

useful mega-environments (Annicchiarico, 1997). In the 

AMMI model, GE interaction effect of each genotype is 

further partitioned into effects due to individual 

environments. About 35% of the sum of squares of GEI 

would be loosed if we only judged based on cross-

validation procedure. In other words, this proportion of 

GEI was not playing any role in interpreting GEI. 

Cornelius (1993) expressed that one of the plant breeder’s 

objectives is to obtain from the entire data set the best 

estimates of the true performance levels of the cultivars in 

the environments where they were evaluated, not to 

predict a subset from another subset. Since the cross-

validation might retain fewer terms than the optimum for 

the breeder’s objective, selection of optimal model based 

on cross-validation seems to be more conservative than 

the other F-tests (Akbarpour et al., 2014). Annicchiarico 

(1997) and Cornelius (1993) also stated that selecting 

AMMI model by cross-validation tend to be conservative 

and this issue refers to deletion of one or half replications 

of full data set for calculating the modeling data. To 

overcome on this problem and to use the full data set for 

modeling data Moreno-Gonzalez et al. (2003) declared the 

theory of partitioning eigenvalue method (Akbarpour et 

al., 2014). The PCA based on GE interaction showed that 

the cumulative contributions of the first five components 

accounted for over 84% of the total variation in seed yield 

(Table 5). Similar to the results obtained using AMMI 

models for the analysis of multi-environment trials of 

durum wheat (Sabaghnia et al., 2013) and different crops 

such as soybean, citrus and lentil (Zobel et al., 1988; Iwata 

et al., 2002; Sabaghnia et al., 2008), the AMMI model 

used in the present investigation exhibited complex 

interaction requiring as many as five IPCAs. 

 

 

 

Table 5. Eigenvalues and contributions of the first five principal 

components 

Components Eigenvalue Proportion Cumulative 

IPCA 1 1.12 × 10+7 36.29 36.29 

IPCA 2 9.04 × 10+6 29.32 65.61 

IPCA 3 2.28 × 10+6 7.41 73.02 

IPCA 4 2.14 × 10+6 6.94 79.96 

IPCA 5 1.42 × 10+6 4.60 84.56 

Total 

Variance 
3.08× 10+7 - - 

 

However, five types of AMMI parameters were 

calculated as EV1, AMGE1, SIPC1 and D1 parameters 

(using only one IPCA), EV2, AMGE2, SIPC2 and D2 

parameters (based on RMSPD results and using IPCA1 

and IPCA2), EV3, AMGE3, SIPC3 and D3 parameters 

(using the first three IPCAs. Considering explained 

variation due to each IPCAs, type 1-based parameters 

benefits 36.29%, RMSPD-based parameters benefits 

65.61%, type 3-based parameters benefits 73.02%, type 4-

based parameters benefits 79.96%, and type 4-based 

parameters benefits 84.56% of GE interaction variations 

(Table 4). It is clear that calculating AMMI stability 

parameters based on the larger numbers of IPCAs results 

in the most usage of GE interaction variations. 

According to minimum values EV1 and D1 

parameters, and minimum absolute values of  SIPC1 

parameters, genotypes G2, G5, G7 and G8 were the most 

stable genotypes and AMGE1 results showed that G2, G5, 

G7, G17 and G18 were the most stable genotypes (Tables 

6 and 7). These stable genotypes indicated low mean yield 

across test environments and so could not be considered as 

the most favorable genotypes. It can be stated that, these 

genotypes had static concept of stability which equal to 

homeostasis phenomenon of quantitative genetics. 

Anyhow, most plant breeders have used the stability 

similar to the above targets and to determine a genotype 

which shows a relatively constant yield in various 

environmental (Becker, 1981). Also, stable genotypes 

with static concept do not necessarily respond to improved 

growing conditions with increased yield (Becker and 

Leon, 1988). 

Genotypes G8, G11, G14 and G19 were the most 

stable genotypes based on EV2 and D2 parameters, 

genotypes G4, G11, G16 and G17 were the most stable 

genotypes based on SIPC2 parameter, and genotypes G5, 

G9, G14and G18 were the most stable genotypes based on 

AMGE2 parameter (Tables 6 and 7). Although, most of 

these genotypes had not the high mean yield performance, 

but some genotypes (G10, G11, G12 following to G8) 

showed relatively high mean yield. In recent decades, 

most plant breeders would prefer an agronomic concept of 

stability instead of static concept of stability (Becker and 

Leon 1988). In agronomic or dynamic concept of stability  
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it is not required that the genotypic response to 

environmental conditions should be equal for all 

genotypes. It seems that using first two IPCAs in stability 

analysis could benefits dynamic concept of stability in 

identification of the most stable genotypes and high mean 

yield. 

According to minimum values EV3, SIPC3 and D3 

parameters, genotypes G4, G5,  G10, G11, G14, G17 and 

G18 were the most stable genotypes while based on 

minimum absolute values of AMGE3 parameter, 

genotypes G6, G8, G12 and G18 were the most stable 

genotypes and genotypes G3 and G20 were the unstablest 

genotypes (Tables 6 and 7).  In this research we calculated 

standard deviation of each AMMI parameters and result 

showed that EV standard deviation for genotypes G4, 

G17, G5, G10, G8, G14, G16 and the D standard 

deviation for genotypes G4, G5, G8, G14 and G18 also 

were lowest values. The SIPC standard deviation for 

genotypes G4, G6, G10, G11, G14, G17, G19 and the 

AMGE standard deviation for genotypes G5, G6, G7, 

G14, G17 and G19 also were lowest values (Tables 6 and 

7). In this research Only genotypes G10 and G12 had high 

mean yield and genotypes G8, G4, G11 and G17 had 

moderate mean yield while the other most stable 

genotypes had relatively low mean yield. 

According to ASV parameter, genotypes G11, G14, 

G19 and G17 were the most stable genotypes while 

genotypes G1, G13 and G9 were the most unstable 

genotypes (Table 6). Considering first two IPCAs in ASV 

parameter, 39.46% of GE interaction is used in GE 

interaction exploration. The two IPCAs have different 

values and meanings and the ASV parameter using the 

Pythagoras theorem and to get estimated values between 

IPCA1 and IPCA2 scores to produce a balanced parameter 

between the two IPCA scores (Purchase, 1997). Also, 

ASV parameter of this investigation used advantages of 

cross validation due to computation from first two IPCAs. 

The results of ASV parameter have many similarities with 

the other AMMI stability parameters which calculated 

from the first two IPCAs scores. According to MASV 

parameter, genotypes G11, G14, and G19 were the most 

stable genotypes while genotypes G9, and G15 were the 

most unstable genotypes (Table 7). Considering first five 

IPCAs in MASV parameter, 84.56% of GE interaction is 

used in GE interaction exploration. The results of MASV 

parameter have many similarities with the other AMMI 

stability parameters which calculated from the first two 

IPCAs scores. Finally according to the most of type 1 of 

AMMI parameters (EV1, AMGE1, SIPC1 and D1), 

genotypes G8, G17 and G11; based on the type 2 of 

AMMI parameters (EV2, AMGE2, SIPC2, D1 and ASV), 

genotypes G4, G5, G10, G11 and G17; due to type 3 of 

AMMI parameters (EV3, AMGE3, SIPC3 and D3 and 

MASV), genotypes G8, G10 and G12 were detected as the 

most stable genotypes. Considering all of the AMMI 

stability parameters, genotypes G8, G10, G11, G12 and 

G17 following to genotypes G7 and G9 were the most 

stable genotypes. Among these stable genotypes, only 

genotypes G10 and G9 had the high mean yield 

performance (3470 and 3404 kg ha-1) whiles the yield 

performance of G7, G8, G11 and G2 had moderate mean 

grain yield.  

 

Table 6. The EV and D parameters of AMMI model for durum wheat yields of 20 genotypes tested in 20 environments 

Genotype MGY EV1 EV2 EV3 STDEV D1 D2 D3 STDD ASV 

G1 3264 0.193 0.101 0.081 0.060 1470 1752 3522 1112 28.74 

G2 3098 0.000 0.052 0.044 0.028 54 1017 1334 667 17.60 

G3 3074 0.069 0.035 0.060 0.018 881 986 2364 827 17.05 

G4 3231 0.013 0.022 0.016 0.005 379 906 1380 501 12.07 

G5 3203 0.002 0.027 0.019 0.013 156 844 1072 477 12.90 

G6 3066 0.041 0.024 0.061 0.018 677 938 2170 797 13.87 

G7 3153 0.002 0.040 0.064 0.031 142 987 1633 747 15.65 

G8 3239 0.005 0.015 0.014 0.006 228 707 1090 432 9.77 

G9 3404 0.043 0.121 0.089 0.039 691 2030 2961 1141 27.81 

G10 3470 0.028 0.039 0.026 0.007 560 1231 1844 642 16.30 

G11 3207 0.010 0.006 0.007 0.002 338 438 921 312 6.76 

G12 3343 0.118 0.089 0.080 0.020 1150 1880 3405 1151 25.82 

G13 2995 0.175 0.107 0.073 0.052 1400 1989 3501 1083 29.00 

G14 3073 0.021 0.011 0.007 0.007 482 554 1037 301 9.37 

G15 3252 0.047 0.118 0.082 0.035 728 2035 2918 1102 27.65 

G16 3143 0.035 0.044 0.048 0.007 626 1323 2308 845 17.52 

G17 3200 0.014 0.025 0.018 0.005 402 971 1463 531 12.95 

G18 3222 0.045 0.026 0.020 0.013 712 964 1806 573 14.45 

G19 3089 0.026 0.013 0.045 0.016 539 568 1605 607 10.39 

G20 3120 0.111 0.085 0.147 0.031 1116 1845 3747 1358 25.26 
MGY = Mean Grain Yield, EV1 = EV for first IPCA, EV2 = EV for first two IPCAs,  for D. 
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Table 7. The SIPC and AMGE stability parameters of AMMI model for durum wheat yields of 20 genotypes tested in 20 

environments 

Genotype MGY SIPC1 SIPC2 SIPC3 STDSIPC AMGE1 AMGE2 AMGE3 STDAMGE MASV 

G1 3264 25.5 20.3 53.6 17.9 537 481 913 235 48.40 
G2 3098 -0.9 -18.6 -12.7 9.0 0.02 81 134 68 57.90 
G3 3074 -15.3 -13.3 -41.5 15.7 -753 -773 -1588 476 41.54 

G4 3231 6.6 -3.1 1.0 4.8 -53 36 -38 48 35.13 

G5 3203 -2.7 -15.3 -16.1 7.5 9 23 48 20 43.35 
G6 3066 11.7 7.0 4.4 3.7 -57 -61 -13 27 43.59 

G7 3153 -2.5 -17.9 -33.4 15.5 13 106 124 59 55.13 
G8 3239 -4.0 -12.7 -20.7 8.4 24 62 20 23 42.88 

G9 3404 12.0 36.5 42.3 16.1 36 3 120 60 81.18 

G10 3470 9.7 22.0 10.3 6.9 -59 -103 -161 51 42.30 
G11 3207 -5.9 -4.1 -13.7 5.1 34 33 75 24 21.06 

G12 3343 19.9 6.6 36.2 14.8 -60 31 10 48 55.58 
G13 2995 -24.3 -35.1 -56.5 16.4 167 176 322 87 52.84 

G14 3073 -8.4 -7.1 -15.4 4.5 31 25 55 16 20.28 
G15 3252 12.6 36.5 53.2 20.4 -92 -109 -246 84 80.43 

G16 3143 -10.9 1.9 -18.2 10.2 79 86 286 118 47.18 

G17 3200 -7.0 3.4 -5.8 5.7 12 38 26 13 36.59 
G18 3222 12.3 7.7 23.4 8.1 -12 17 25 20 31.09 

G19 3089 -9.4 -8.8 -5.4 2.2 43 41 42 1 27.66 
G20 3120 -19.4 -6.0 -5.1 8.0 -23 638 773 426 63.99 

MGY = Mean Grain Yield, SIPC1 = SIPC for first IPCA, SIPC 2 = SIPC for first two IPCAs, … for AMGE1, AMGE2 and AMGE3. 

 

First four AMMI's in this research ranked genotypes 

based on yield stability (Table 8). In this research, G10 

genotype was chosen as the most stable genotype with 16 

being chosen between first four genotypes by AMM1 till 

AMMI4, followed by G12 with 12 being between 4 

superior genotypes, was chosen as the second rank. 

Finally, although G8 won first place in 4 locations at the 

second year, however by 6 times being between four 

superior genotypes, was selected as third stable genotypes. 

The best recommended genotypes according to the present 

study are G10 with 3470 kg ha-1 grain yield for Gachsaran 

and Khorramabad, G12 with 3343 kg ha-1 grain yield for 

Ilam and G10 and G12 for Moghan and Gonbad regions 

which had high mean yield and were most stable for 

related mega-environments.  

 

Table 8. First four AMMI selections of genotypes per each environment 

Environment Mean Yield AMMI1 AMMI2 AMMI3 AMMI4 

E1 3398 G10 G1 G9 G12 

E2 1952 G10 G12 G9 G3 

E3 5313 G1 G12 G18 G6 

E4 4801 G8 G7 G13 G10 

E5 4203 G10 G9 G7 G8 

E6 2260 G10 G20 G15 G12 

E7 1307 G8 G10 G12 G4 

E8 3185 G8 G7 G9 G10 

E9 3559 G8 G12 G18 G10 

E10 3357 G8 G10 G12 G7 

E11 4935 G5 G15 G6 G14 

E12 3717 G11 G4 G9 G2 

E13 3508 G20 G10 G5 G12 

E14 1161 G5 G12 G10 G1 

E15 2414 G20 G11 G9 G17 

E16 2117 G20 G10 G19 G12 

E17 4697 G9 G10 G3 G11 

E18 1786 G10 G3 G5 G12 

E19 2222 G5 G12 G10 G19 

E20 3951 G9 G15 G10 G16 
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CONCLUSIONS 

Successful genotypes of durum wheat need to be 

adapted to a broad range of environmental conditions in 

order to ensure their yield stability. Hence, the 

information on GE interaction and stability is of 

paramount importance for durum wheat breeders and 

farmers. It is clear that the AMMI model is excellent tools 

for multi-environment trials analysis. Compared with 

conventional methods of the multi-environment trials 

dataset analysis, the AMMI model approach has some 

advantages (Gauch, 2006; Gauch et al., 2008). Selection 

of genotypes for stability is needed in most dryland 

environments, where the environment is variable and 

unpredictable. Therefore, genotype evaluation under 

variable environmental conditions and simultaneous 

selection for yield and stability is the most valuable 

selection index that can be used in any plant breeding 

program. Such an outcome could be regularly employed in 

the future to delineate predictive, more rigorous 

recommendation strategies as well as to help define 

stability concepts for recommendations for durum wheat 

and other crops in other areas of the world. 

The stability statistics that has been employed in the 

present study quantified yield stability of genotypes. 

Despite the fact that the different stability procedures are 

indicative, the AMMI model provides useful information 

for reaching definitive conclusions. Therefore, the 

identifying mega-environments and related wining 

genotypes are indispensable, as farmers would prefer to 

use a high-yielding genotype that performs consistently 

from test environment to test environment. Thus, the best 

recommended genotypes according to the present study 

are G10 with 3470 kg ha-1 grain yield for locations 

Gachsaran and Khorram ababd, G12 with 3343 kg ha-1) 

for Ilam location and both G10 and G12 for locations 

Gonbad and Moghan which had high mean yield and were 

the most stable for related mega- environments. 
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